
System Enforced
Transitive Read-Only

Objects in KeyKOS-like
Systems

1

This talk is about system-level assurance of an isolation property.

Being a walk along one
path through the design

space.

2

There may be better paths. Go find them.

The Problem

Area BArea A
Reference

We want objects in A to be able to get data
from objects in B without being able to

influence anything in B in any way.

3

For an Orange Book example, think of A as being Top Secret and B as being unclassified.

The Problem

Class Foo {
 private Object a;
 void setA(Object x) { a = x; }
 void getA(void) { return a; }
}

4

A dumb example with a getter and a setter. It is just complex enough to illustrate the point.

The Problem
We need two types of reference to a Foo:

A strong reference which can use any method.

A “no-influence” reference where:
 (1) setA() can’t be used
 (2) any object returned by getA() is
 transitively read-only,
 (3) these restrictions are enforced by “the
 system”.

5

If we were working at the language level, “the system” might be the language runtime. For
this talk, “the system” is the OS kernel and the basic system objects.

The (Simplified) Object

Code
for

Instance of
Foo

Memory
Reference

to Foo
Reference
to Memory

6

In KeyKOS, the “Reference to Foo” is a start or resume key <http://www.cis.upenn.edu/
~KeyKOS/agorics/KeyKos/Gnosis/18.html#gatetype>. The “Code for Instance of Foo” is part
of a domain <http://www.cis.upenn.edu/~KeyKOS/agorics/KeyKos/Gnosis/15.html>

Existing: The Factory

• Standard object creation tool

• Allows auditing the communication paths
new objects have when they are “born”

• Allows debug access with permission of
both the type’s “owner”, and the instance’s
“owner”

7

The notation “Existing” indicates that this facility exists in current versions of KeyKOS.
The factory: <http://www.cis.upenn.edu/~KeyKOS/agorics/KeyKos/Gnosis/68.html>

Existing: The Sense
Reference

• Allows transitive read/only access to
memory☝

• Allows reference to a (very) few other
objects☝

• Sets general object references to null☟

• Is known by the Factory☝

8

See: <http://www.cis.upenn.edu/~KeyKOS/agorics/KeyKos/Gnosis/38.html>

Today, We Can:

Instance
of Foo

Memory

Strong
Reference

to Foo

Reference
to Memory

Instance
of Foo
ViewerNo-Influence

Reference
to Foo

Se
nse

 Refe
ren

ce

to M
em

ory

9

What It Does Right

• Provides both strong and no-influence
accesses.

• Provides system assurance of transitive
read/only.

10

What It Doesn’t Do

• Provide for verifying the no-influence
reference is indeed no-influence.

• Provide for calling sub-objects. i.e. It doesn’t
compose

• Handle race conditions for memory access

11

Features
• Instance of Foo Viewer can have its own

state from call to call, perhaps making an
Instance of Foo Viewer Instance Viewer
desirable.

• We’re glossing over the question of how
the viewer’s stack and heap addresses are
allocated. Having an Instance of Foo Viewer
Instance Viewer makes the answer more
complex.

12

This slide mentions a potential can of worms which is not necessary to solve the basic
problem.

Verifiability Today
Instance
of Foo

Memory

Strong
Reference

to Foo

Reference
to Memory

Instance
of Foo
Viewer

No-Influence
Reference

to Foo Maker

Se
ns

e
Re

fe
re

nc
e

to
 M

em
or

y

Factory
which
makes

Return
two

references

13

Since instead of getting a no influence reference, we get a reference to a factory which will
create a no influence reference, we can use the standard factory mechanism <http://
www.cis.upenn.edu/~KeyKOS/agorics/KeyKos/Gnosis/72.html#discr> to verify that the
reference we get is indeed “no influence”.

Verifiability Today

Viewer Factory Components:
 (1) Sense reference to instance of Foo’s memory
 (2) Read/Only reference to Instance of Foo Viewer
 code

This is a “no hole” factory

14

Hole: <http://www.cis.upenn.edu/~KeyKOS/agorics/KeyKos/Gnosis/73.html#hole> is a
reference that factory can’t say doesn’t pass data. The factory knows about both read-only
memory references and sense references.

New Sense References

• Provide sensory access to an object

• Have “discretion” for use by the factory

• Pass factories at least as discreet as it is

15

Having seen what we can do with today’s system. Lets see how those ideas can take us a bit
further. We describe a “new sense reference” with some factory-like properties. The
properties are continued on the next slide.

New Sense Function

• References to nodes become sensory
references to the same node

• Factories must be at least as discreet as the
sense reference or they become null

• Discrim, sensory references, etc. are passed
unchanged

• All other references become null

16

Discrim, sensory references etc. are mentioned to be pedantically complete. See <http://
www.cis.upenn.edu/~KeyKOS/agorics/KeyKos/Gnosis/38.html> for a list of the current sense
reference’s special cases.

Object Sense
Reference

• Allows sensory access to an object’s
reference registers

• Allows sensory access to an object’s
address space

• Allows sensory access to an object’s extra
slots, C10 and C11

• Allows access to an object’s data registers

17

The “object sense reference” is a sensory version of a domain key <http://
www.cis.upenn.edu/~KeyKOS/agorics/KeyKos/Gnosis/41.html>

New Sense References
Instance
of Foo

Memory

Strong
Reference

to Foo

Reference
to Memory

Instance
of Foo
Viewer

No-Influence
Reference

to Foo Maker

Se
ns

e
Re

fe
re

nc
e

to
 M

em
or

y

Factory
which
makes

Return
two

references
Object
Sense

Reference

18

The “object sense reference” allows the viewer to fetch sensory versions of any references
that Foo holds.

How Do We Get No-
Influence References to

Sub-Objects?

• If our object uses other objects, we can use
the sensory reference to fetch from it’s
reference registers to access them.

• But we don’t have a way of getting their no-
influence factories.

19

But typically Foo will not be using sensory references to its sub-objects. But the viewer can
only fetch sensory references.

Two ways to get
References to Sub-

Objects

• A new kernel function which gets it from
the R/W object

• By cooperation between the R/W object
and the R/O viewer

20

We could have a convention where each R/W object stores the reference to its viewer factory
in a standard location and have a kernel function which fetches that location. Or we can leave
that level of cooperation to the objects’ programmer.

The Get No-Influence
Factory Tool

• Define an object register which holds the
No-Influence Factory (NIF) reference

• No such reference: this register holds Null

• Get NIF Tool takes an object reference and
returns the object’s NIF register contents

• Tool is used by the Object sense reference

21

This is a look at the requirements for the kernel function in the last slide. Note that it is
closely held by the “object sense reference” which will perform discretion tests on any
references it fetches via this tool.

New Sense Function

• References to nodes become sensory
references to the same node

• Object references use the NIF Tool

• Factories must be at least as discreet as the
sense reference or they become null

• Discrim, sensory references, etc: unchanged

• All other references become null

22

And this is how the kernel function and the “object sense reference” work with the new sense
function.

Cooperative Option
• Factories return both the R/W reference

and the NIF reference

• When a sub-object is built, the builder
saves the NIF reference for use by its NIF
during construction of a viewer

• Requires more complex reference
structures for complex object graphs

• Get NIF Tool is an optimization

23

Assume no special kernel tool and lay the work on the programmer. This is what would have
to happen.

Issues and Annoyances

• Need a new factory for each object
instance

• An object can execute concurrently with its
viewers

24

Potentially lots of factories, with one for each R/W object instance.
Race conditions accessing memory.

Need A Factory For
Each Object instance

• Factory can be one node with a debugging
reference to object + other data for
factory with factory code as “keeper”

• A new object reference type which, with
conventions, eliminates the need for a node

25

Ways to make the multiple factories cheaper.

Concurrent Execution

• Wall banging is an issue with most solutions

• All solutions have significant issues

26

These next few slides try to show the options for the concurrent execution issue.

Concurrent Execution
Approaches

• Meter manipulation

• One object w/separate references

• “Canned” front end that vectors requests

• Virtual copy memory for stability

• Object entry + exit counts

27

Meter manipulation

• Meter keeper ensures either R/W object’s
meter is on or the viewer’s meters are on

• Trap on no objects running under a meter
has never been implemented

• Timing tests can notice viewers running

28

One object with
separate references

• Change references for object or for each
viewer

• Major kernel changes

• Not clear how to handle mutually
suspicious viewer objects

• Natural for a Vat oriented system

29

By “vat oriented system” think of the E language runtime <http://www.erights.org/> or
Waterken <http://waterken.sourceforge.net/>.

“Canned” front end
that vectors requests

• Timing busy state allows view use to be
detected by R/W object’s users

• Limits flexibility of object interface

• Vectoring object needs to be trusted

• Adds additional gate jumps to the path

30

Virtual copy memory
for stability

• Cost of virtual copy for each change in
object

• Doesn’t provide synchronization with sub-
objects

31

Entry + exit counts

• Object increments a counter on entry and
another on exit

• Viewers repeat their methods until both
counters are unchanged

• Viewers not assured of termination

• Good from a wall banging point of view

• Transient invalid states cause viewers to
trap

32

